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ABSTRACT. Let K(G) denote set of all cliques of a graph G. Two cliques
l1,l2 € K(G) are said to clique dominate each other if there is a vertex
common to both I; and l2. A set L C K(G) is said to be a clique-clique
dominating set (CCD-set) if every clique in G is clique dominated by
some clique in L. The clique-clique dominating set having minimum car-
dinality is called clique-clique domination number ve.(G). In this paper,
several bounds for the above parameter are obtained. Also bounds on
number of cliques in a graph is given in terms of clique numbers.
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1. INTRODUCTION

All the graphs considered in this paper are finite, simple and undirected.
For any undefined terminologies and notations refer [4, 15]. If a graph G
is isomorphic to r copies of a graph H then we write it as G = rH. Two
vertices are said to dominate each other if they are adjacent. Aset S C Visa
dominating set if every vertex in V — S is dominated by a vertex in S. The
dominating set having minimum cardinality is called domination number
~v(G). These concepts of domination are well studied - see, for instance, [3,
6, 14]. Teffany et al. [13] have characterized the clique-dominating sets in
the join, corona, composition, and cartesian product of graphs. They also
determined the corresponding clique domination number of the resulting
graph. Forbidden subgraph characterizations of graphs with a dominating
clique or a connected dominating set of size three have been obtained by
Margaret et al. [8]. The problem of dominating clique in interval graphs
has been investigated by Sudhakaraiah et al. [11]. Interval graphs, due to
their wide range of applications in the field of scheduling and genetics, have
been taken into consideration for their investigation. As a result, certain
classes of intervals have been considered, and their dominating cliques have
been obtained. In their research, Mohanaselvi et al. [9] have successfully
determined the exact values of the clique neighborhood domination numbers
for various graph types, including the complete graph, complete bipartite
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graph, star graph, wheel graph, fan graph, banana tree, book graph, n-
barbell graph, and friendship graph. For any k,n € ZT such that n < 4 and
1 < k <n, Edward et al. [5] have shown that there exists a connected graph
G, with |V(G)| = n and clique secure domination number, ~.5(G) = k.
Additionally, they have established that for any k,n,m € Z* such that 1 <
k < m, there exists a connected graph G with |V(G)| = n, v.4s(G) = m and
clique domination number, 7. (G) = k. Furthermore, they have presented
the characterization of the clique-secure dominating set resulting from the
join of two graphs.

The minimum number of vertices needed to cover all the edges of a graph
is the vertex covering number «(G) while the independence number 5y(G)
is the maximum number of vertices in an independent set of G. These
two numbers are related by classical Gallai’s Theorem: ag(G) + Bo(G) =
p. The upper vertex covering number ¢(G) is the maximum order of a
minimal covering of G. The independent domination number i(G) is the
minimum order of an independent dominating set of G. Naturally, we have
an extension of Gallai’s theorem to these numbers as: €(G) +i(G) = p.

A vertex v € V is a cut-verter of a graph G, if G — v is disconnected and
such an edge is a bridge or a cut-edge. A graph G is separable if it has a
cut-vertex otherwise it is nonseparable. A maximal nonseparable subgraph
is a block of G. A maximal complete subgraph is a clique. The minimum
number of cliques (not necessarily maximal) that cover all the vertices of a
graph is well known in graph theory as partition number 6y(G) introduced
by Berge [1] and has been celebrated in Berge’s conjecture on perfect graphs.
Choudam et al. [2] studied its edge analogue edge clique covering number
01(G) defined as the minimum number of cliques that cover all the edges
of a graph. The minimum number of colors needed to properly color the
vertices of G is the chromatic number x(G). Since independent sets and
cliques exchange their properties on complementation 6q(G) = x(G).

A vertex v is called unicliqual if it is incident on only one clique in G.
If v is incident on more than one clique we call it a polycliqual vertex. We
observe that x = wwv is contained in a clique [ if both u and v are incident
on [. If an edge is contained in a single clique, then the edge x is called
unicliqual. If x is contained in more than one clique then x is called a
polycliqual edge. In a cycle every vertex is bicliqual vertex and every edge
is unicliqual. In corona C3o0 C3 no edge is polycliqual edge. Every cutvertex
is a polycliqual vertex. Every non cutvertex is unicliqual. In K4 — x, the
chord is a polycliqual edge.

Let K(G) denote the set of all cliques of G. Let Po(G) denote the set of
all polycliqual vertices of G. Let |K(G)| = k and |Po(G)| = pe. Two cliques
k1 and ko are adjacent if there is a polycliqual vertex incident on k; and
ka. A clique graph Kg(G) is a graph with vertex set K(G) and any two
vertices in K¢ (G) are adjacent if corresponding cliques in G have a vertex
in common.

2. BOUNDS ON NUMBER OF CLIQUES IN A GRAPH

The minimum clique number ¥(G) is the order of a minimum clique of
G while the mazimum clique number w(G) is the order of a maximum clique
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of G. It is immediate that 3(G) < w(G). Even though these two parameters
are well studied in literature, the first parameter minimum clique number
P(G) received less attention and we are interested in it than the later. If G
has an isolated vertex then ¥(G) = 1. If G is a triangle free graph without
isolates, then 9(G) = 2.

It is well known that an estimate for the number of edges in any graph
is given by %6 <q< %. In the following results we obtain an estimate for
number of cliques in G. First consider the following results. A graph G is

clique regular if every clique is of same order. Thus G is r-clique regular
graph if w(G) =Y(GQ) =r.

Proposition 2.1. For any graph G with k cliques, edge clique covering
number 61(G), and mazimum clique number w(G),

2q
1 ——— < 6,(G) < k.
(1) w(wfl)_l()_
Proof. Since a clique can cover at most t = w(w;l) edges, we need at most

1= w(i—‘il cliques to cover all the edges of G and hence lower bound follows.
Since the set of all cliques forms an edge clique covering of G, we have

01(G) < k. O
Remark: For the Hajo’s graph, ¢ =9, w =3, k=4, 6 = 3.

2x9
We have —24 = > _3_9(G)<4=F.

w(w—1) 3 %2
For any Friendship graph F3,¢=9, w =3, k=3, 61 = 3.

9 X
Therefore, We have w(w—‘il) =333~ 3=0,(G) =k.

The Hajo’s Graph and its complement is given below. In the Hajo’s graph,
the edges of the inner triangle are polycliqual edges while the remaining
edges are unicliqual. In the compliment of Hajo’s graph, all the edges are
unicliqual edges.

FiGURE 1. The Hajo’s graph and its Complement

Corollary 2.2. For any graph G with 61(G) =t,

/42
(2) %}f&’t < w(G).

Proof. From Proposition 2.1, we have w?t — wt — 2¢ > 0. On solving this
quadratic equation for w we get the desired bound. 0
For example, for the Hajo’s graph, 6; = 3, and Lv;-&-&;t = % =3
w(@).
On imposing certain conditions, an upper bound for number of cliques &
in G is derived in the next result.
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Proposition 2.3. If every edge of G is unicliqual, then

2q
3 k< —.
3) ~ 39 -1)
Proof. Since every edge of G is unicliqual, no two cliques share any edge
of G. Further, any clique can contain at least (g) edges. Hence ¢ > (g)k
Then the result follows on simplification. The bound is sharp for any cycle

C), and any clique regular block graph. O

In the above proposition, condition that every edge is unicliqual is essen-
tial. For example, in Hajo’s graph every edge is not unicliqual and one can
check that the result (3) is not satisfied.

The above proposition suggests an upper bound for minimum clique num-
ber when the number of cliques k is known. Since the proof is similar to the
proof of Corollary 2.2 we omit the proof of next corollary.

Corollary 2.4. If every edge of G is unicliqual, then

(1) 19<k+\/k2+8qk
- 2k ’

The following characterization is straight forward.

Proposition 2.5. Equality for k in Proposition 2.1 and 2.3 is attained if
and only if G is a clique reqular graph in which every edge of G is unicliqual.

Corollary 2.6. Equality for k in Proposition 2.1 and 2.3 is attained if G is
a clique regular block graph.

3. A NOTE ON MINIMUM CLIQUE NUMBER

A graph G is cubic if every vertex is of degree 3. For a cubic graph
G = rKy , we have ¥(G) = 4. We prove that for any other cubic graph,
9(G) is always 2.

Proposition 3.1. For any cubic graph G 2 rK, , ¥(G) = 2.

Proof. Since G 2 rK, and K4 is the only cubic graph with p < 6, we assume
that p > 6.

Case 1: Let G be a connected cubic graph with p > 6. Then ¥(G) <
14 6(G) =143 =4. Also, Since G is connected, G has no isolates. Hence
IG) > 2.

Subcase 1.1: Suppose 9(G) = 4. Then every clique is of order at least 4.
Let k1 € K(G) be any clique of order 4. Since G is connected, there exists
at least one clique incident on some vertex say u € k;. But then d(u) > 6 -
a contradiction.

Subcase 1.2: Suppose J(G) = 3. Then every clique is of order at least 3. If
there exists a clique of order 4, we get a similar contradiction as in subcase
1.1. Therefore, we assume that every clique in G is of same order 3. Let
k1 € K(G) be any clique of order 3. Since G is connected, there exists at
least one clique incident on some vertex say u € ki. Then d(u) > 4 - a
contradiction. Hence we are forced to assume that there exists a k2 € K(G)
adjacent to ki such that k1 and ks have a common edge uv. Let {w, u, v, x}
be the vertices of kj U ko. Again, as G is connected and p > 6, there exists
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a kg € K(G) adjacent to k1 U ko such that (k1 Uks) Nks = {uv} or {uw} or
{vw} or {ux} or {vx}. But then in any case we get d(u) > 4 or d(v) > 4 -
a contradiction. Hence we have 9(G) < 2. But we already have J(G) > 2.
Therefore, we conclude that 9(G) = 2.

Case 2: Let G be any cubic graph such that G 2 rK4. Then G has at least
one component H such that H is a cubic graph with p > 6. Then by case
1, 9(G) = 2. O

Since ¥(G) = i(G), the following corollary is immediate.
Corollary 3.2. For any cubic graph G 2 rKy, i(G) = 2.

As a more general result, we have the following characterization graphs

for which i(G) = 2.
Corollary 3.3. For any graph G , i(G) = 2 if and only if 9(G) = 2.

4. CLIQUE-CLIQUE DOMINATION

Definition 4.1. Two cliques ki, k2 € K(G) are said to clique dominate
each other if there is a polycliqual vertex incident with ky and ko. A set L C
K(G) is said to be a clique-clique dominating set (CCD-set) if every clique
in G is clique dominated by some clique in L. The cardinality of a minimum
clique-clique dominating set is the clique-clique domination number Ye.(G).

It is immediate that v..(G) = v(Kg(G)).

Definition 4.2. A set L C K(G)is cc-full if every clique in L is adjacent to
some clique in K(G) — L. The cardinality of a maximum cc-full set is the
ce-full number feo(G).

For the graph G with 15 cliques in Figure 2, v, = 4 and f,. = 11.

FIGURE 2. A graph G with 15 cliques

Proposition 4.3. For any connected graph G with k cliques,

o) i) < |5

Proof. Let L be a minimal CCD-set of G. Then 7.(G) < L. We also see
that for any connected graph, if L is a minimal CCD-set of G, then K — L
is also a CCD-set of G. Hence v..(G) < |K(G) — L|. Adding the above two
equations we get,
230e(G) < L]+ |K(G) - L,
< |1+ 1K (G| - 1L,
< |K(G)] = k.
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Then the result follows. O

Proposition 4.4. For any connected graph G with k cliques,
(6) Yee(G) + fee = k.

Proof. Let L be a ~y.-set of G. Then, K(G) — L is a cc-full set of G. Hence
fee > |K(G) = L] = k — e

Therefore, Yee + fee = kevveeernnnnn. (A)

On the other hand let D be a maximum cc-full set of G. Then K(G) — D is
CCD set of G.

Hence vee < |K(G) - D| =k — fec-

Therefore, Yee + fee < kevvvveeennnns (B)

Then the result follows from (A) and (B). d

The cc-degree(clique-clique degree) of a clique I, de.(l) is the number of
cliques adjacent to . Let A.(G) and 6..(G) denote the maximum and
minimum cc-degrees of G respectively. In what follows, we use the following
notations. For any clique | € K(G), cc-neighbor of 1,

Neo(l) ={h € K(G)|l and h are adjacent}.

Proposition 4.5. For any graph with mazimum cc-degree A,

< < k- Ag.
1+Acc—rycc_ cc

Further, the bound is sharp.

Proof. Since a clique can cc-dominate at most A, cliques and itself, to cc-

dominate k cliques we need at least cliques. For the upper bound,

k
+ ACC
let [ be a clique of maximum cc-degree A... Then K(G) — Ne.(I) is a cc-
dominating set of G. Hence 7. < |K(G) — Nee(D)] = k — Ace. O

Any clique star and clique complete graph attain both upper and lower
bounds.

5. INVERSE CLIQUE TRANSVERSAL NUMBER

In 1990, the concept of vertex covering is extended as clique transversal
number, defined and studied by Tuza [7], and later by Erdos et al. [10] in
1992.

5.1. Clique Transversal number. A vertex v € V and a clique h € K(G)
are said to cover each other if v is incident on the clique h. Minimum number
of vertices that cover all the cliques of G is called clique transversal number
7o(G). We immediately note that for any triangle free graph, ag(G) = 7.(G).

A windmill graph Wd(n, k) is a graph with k copies of complete graph
K, adjacent at a single vertex. In particular, Wd(3,k) = Fj is called the
friendship graph. Any windmill graph Wd(n, k) is n-clique regular. A gen-
eralized star denoted S(n, k) is a windmill graph in which each K,, has n—1
vertices in common. A generalized star is shown in Figure 3.

For any v € V the open neighborhood N(v) = {u € V|u is adjacent to
v} and the closed neighborhood N[v] = N(v) U {v}. Then degree d(v) =
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Generalized Star S(4, 6)

FIGURE 3

|N(v)|]. Let A(G) and §(G) denote the maximum and minimum degree of
G respectively. If G denote the complement of G then it is well known that
(%) AG) +6(G) = AG)+6(G)=p—1.

The ve-degree is defined by Surekha Bhat et al. [12] The ve-degree (vertex
clique degree) of a vertex u, dy.(u) is the number of cliques incident on wu.
Let Aye(G) and 6,c(G) denote the maximum and minimum ve-degrees of G
respectively. We now obtain the following lower bound for clique transversal
number.

Proposition 5.1. Let G be any graph with k cliques and mazimum vc-degree
Aye, then

v 3] =

Further the bound is sharp.

Proof. Since any vertex can cover at most A, cliques, we need at least

k
’VA -‘ vertices to cover all the cliques of G. This yields the bound in (7).

Let G be any generalized star S(n, k). Then 7.(G) =1 = g = Ak . Also,
if G is any clique cycle, then 7.(G) = F;-‘ = {Ak -‘ Thus the bound is

sharp.

In the next proposition we obtain a condition under which a set D is an
independent dominating set. For any vertices u and v, the subgraphs (N[v])
and (N[u]) are said to be clique disjoint if they have no clique in common.

Proposition 5.2. For any graph G, a set D = {v1,v2,...., v} is an in-
dependent dominating set of G if and only if the following two conditions
hold.

(i) U Nlvi] = V.
(it) (Nv]) N (Nv;]) is clique disjoint for every vy, v, 1 <i# j <k.

Proof. Suppose D = {v1,v9,....,v;} is an independent dominating set of
G. Then condition (i) holds as D is a dominating set of G. To show that
condition (ii) holds. If possible assume that (N[v;]) N (N[v;]) is not clique
disjoint for every v;,v;, 1 < ¢ # j < k. Then there exists at least one
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clique h € (N[vs]) N (N[v;]). Hence h € (N[v;]) and h € (Nv;]) for some
v;,v5, 1 <4 # j < k. This implies that the clique A is incident on both v;
and v; leading to the conclusion that v; and v; are adjacent - a contradiction.
Conversely, because of the condition (i), D = {vi,va,...., v} is a dom-
inating set of G. Suppose (N[v;]) N (N[v;]) is clique disjoint for every
v;,v5, 1 <1 # j < k. Then the distance between any v; and v; is at least
2. Hence D = {vy,v9,....,v;} is independent. Thus D is an independent

dominating set of G.
O

We now define inverse clique transversal set as follows.

Definition 5.3. Let D be a minimum clique transversal set of an isolate
free graph G. If V — D also contains a clique transversal set D’ of G, then D’
is called an inverse clique transversal set with respect to D. The cardinality
of a minimum inverse clique transversal set is the ‘nverse clique transversal
number TL(G).

The necessary and sufficient condition for existence of at least one inverse
clique transversal set of G is that G has no odd cycle Co,,_1.

FIGURE 4. A graph G with 7. =5

Example 5.4. For the graph G of Figure 4, {vs, vs, v7,v4} is a 7c-set. Thus
{v1,v8,v9,v3,v6} is a T.-set. Hence 7. = 4 and 7. = 5.

Proposition 5.5.

(1) If G is a clique cycle, then 7.(G) = [E—‘

2
(2) If G is a clique path, then
+1, k=0(mod3)
7(G) =

, otherwise

(8) For any generalized star, 7.(G) = 1.
Proposition 5.6. For any 1.-invertible graph G with k cliques,

(G < k.
Proof. Let v; be a unicliqual vertex in the clique l;, 1 < ¢ < k. Then
S = {v1,v2,v3,...,v} is an inverse clique transversal set of G. Therefore,

7(G) < |S| = k. O



On clique—clique domination number and inverse clique transversal number of a graph 741

Proposition 5.7. Let T be a tree such that every non-end vertex is adjacent
to at least one end vertex, then

7e(T) +7(T) = p.

Proof. Let T be a tree. If every non-end vertex of T is adjacent to at least
two end vertices, then the set of all non-end vertices is a minimum clique
transversal set and the set of all end vertices is a minimum inverse clique
transversal set. Suppose there are non-end vertices which are adjacent to
exactly one end vertex. Let D and D’ denote the minimum 7. and 7/-set
respectively. Let u be a non-end vertex adjacent to exactly one end vertex v.
Ifu e D, thenv € D' and if u € D', then v € D. In any case |D|+ |D’| = p.

Thus 7.(T) + 7.(T) = p. O

6. CONCLUSION

In this study, we delved into the well-established concepts of the min-
imum clique number and maximum clique number of a graph. Building
upon this foundation, our work focused on deriving a series of bounds for
these fundamental parameters. Additionally, we introduced a novel parame-
ter called the “cc-domination number,” presenting its formal definition and a
comprehensive characterization of graphs that achieve this particular num-
ber. Throughout our investigation, we explored various properties of the
“cc-domination number,” shedding light on its intriguing characteristics.

This research contributes to a deeper understanding of graph properties
and opens up new avenues for further exploration in the field of graph theory.
By establishing connections between existing parameters and introducing
a novel one, we hope to inspire future researchers to delve into the rich
landscape of graph analysis and uncover even more intricate relationships
within these mathematical structures. Ultimately, our findings add to the
collective knowledge of graph theory and may find applications in diverse
fields such as computer science, network analysis, and optimization.
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